

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03) Paper 01

Question Number	Scheme	Notes	Marks
1(i)	$(8)\int \frac{1}{16+x^2} \mathrm{d}x = (8)\left(\frac{1}{4}\arctan\left(\frac{x}{4}\right)\right)$	Obtains $arctan(kx)$ Allow $k = 1$	M1
	$2\left[\arctan\left(\frac{x}{4}\right)\right]_{4}^{4\sqrt{3}} = 2(\arctan\sqrt{3} - \arctan 1) = \dots$	Substitutes the given limits, subtracts either way round and obtains a value (could be a decimal). The substitution does not need to be seen explicitly and may be implied by their value.	d M1
	$\frac{\pi}{6}$ or $p = \frac{1}{6}$ Correct exa	act value (or value for p)	A 1
	Accept equivalent exact expressions e	.g. $\frac{2\pi}{12}$ or $p = \frac{2}{12}$ and isw if necessary.	A1
			(3)
(ii)	$2\int \frac{1}{\sqrt{9-4x^2}} dx = 2\left(\frac{1}{2}\arcsin \frac{kx}{2}\right).$ M1 : Obtains arcsin (kx). Allo A1 : Fully correct integration b	ow $k = 1$ so allow just arcsin x .	M1 A1
	Substitutes the given limits, subtracture arcsin $\left(\frac{1}{2}\right) = \frac{\pi}{6}$ and the correct order of	$\frac{k}{3} = \sin\left(\frac{\pi}{4}\right) \Rightarrow \frac{2k}{3} = \frac{\sqrt{2}}{2} \Rightarrow k = \dots$ ts either way round, sets = $\frac{\pi}{12}$, uses operations condoning sign errors only to	d M1
	reach a value $\pm \alpha \left(\arcsin \left(\frac{2k}{3} \right) - \frac{\pi}{6} \right) = \frac{\pi}{12} \Rightarrow \arcsin \left(\frac{2k}{3} \right)$ Note that k may be inexact (decimal) or simplified arguments	$\frac{2k}{3} = \frac{\pi}{12\alpha} \pm \frac{\pi}{6} \Rightarrow k = \frac{3\sin\left(\frac{\pi}{12\alpha} \pm \frac{\pi}{6}\right)}{2}$ may be in terms of "sin" but must have a	
	$k = \frac{3\sqrt{2}}{4} \text{ or exact ed}$ Note that a common incorrect answer is	equivalent e.g., $\frac{3}{2\sqrt{2}}$ $k = \frac{3}{2}\sin\left(\frac{5\pi}{24}\right) (= 0.913) \text{ which comes}$ $\sin\left(\frac{2x}{3}\right) \text{ (generally scoring 1010)}$	A1
			(4) Total 7

Question Number	Scheme	Notes	Marks
2(a) Way 1 TU = I	$\Rightarrow \text{e.g.}, \\ -4a - 36 + 5b \\ \text{Obtains at least 2 equation}$ (condone column × row multiplication leading)	$\begin{vmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $= 0 -2 + 3c + 7a = 0$ $= 1 -3 + 2c + 6a = 1$ as with at least one correct. adding to the way 2 equations – see below). It elements or equations.	M1
	e.g., $6a-8b=-60$ $-4a+5b=37$ $\Rightarrow a=, b=$ Obtains values for two of a, b and c . You		d M1
	a = 2, b = 9, c = -4	A1: All three correct values and no extra values unless they are rejected.	A1 A1
			(4)
Way 2 UT = I For first 2 marks	$\mathbf{UT} = \mathbf{I} \Rightarrow \begin{pmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $12 - 3 - 4a = 1$ $\Rightarrow \text{e.g.}, 42 - 6 - 4b = 0$ $[45 + 2c - 36 = 1]$ Obtains at least 2 equations with at least one correct. (condone column × row multiplication leading to the way 1 equations – see above).		M1
	e.g., $-4a = -8$, $-4a = -8$, $-4a = -8$. $\Rightarrow a = -8$. Obtains values for two of a , b and c . You	l elements or equations. $b = -36 \ [2c = -8]$, $b =$ do not need to check their values. As long is sufficient to just write down values.	d M1

Way 3 Inverses	$\mathbf{T}^{-1} = \mathbf{U} \Rightarrow \frac{1}{4a - 5b + 36} \begin{pmatrix} 2b - 24 & -3b + 28 & 4 \\ 6a - 3b & -7a + 2b & 9 \\ -2a + 12 & 3a - 8 & -5 \end{pmatrix} = \begin{pmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{pmatrix}$	
For first mark	$\Rightarrow \text{e.g.}, \frac{4}{4a - 5b + 36} = -4, \frac{2b - 24}{4a - 5b + 36} = 6 \left[\frac{-7a + 2b}{4a - 5b + 36} = c \right]$	
	For $\mathbf{T}^{-1} = \frac{1}{f(a,b)}\mathbf{M}$ where M has at least 1 correct element and obtains 2 equations.	
	Note that there is no requirement to find all the elements of M .	
	OR	N.f.1
	$\mathbf{U}^{-1} = \mathbf{T} \Rightarrow \frac{1}{-6a - 2c + 3} \begin{pmatrix} 9a + 5c & -4a + 5 & 4c + 9 \\ -3 & -2 & -6 \\ 15a + 8c & -6a + 8 & 6c + 15 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{pmatrix}$	M1
	\Rightarrow e.g., $\frac{-3}{-6a-2c+3} = 3$, $\frac{4c+9}{-6a-2c+3} = 7 \left[\frac{6c+15}{-6a-2c+3} = b \right]$	
	For $\mathbf{U}^{-1} = \frac{1}{f(a,c)}\mathbf{M}$ where M has at least 1 correct element and obtains 2 equations	
	Note that there is no requirement to find all the elements of \mathbf{M} .	

2(b)	$\frac{x-1}{3} = \frac{y}{-4} = z + 2 \Rightarrow \begin{bmatrix} l_2 : \mathbf{r} = \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \pm \lambda \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} \left(\text{or } \begin{pmatrix} \mathbf{r} - \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \right) \times \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} \right) = 0$ Obtains parametric/vector form (allow one slip only) or clearly identifies position and direction vectors. May be implied by an attempt to transform both.	M1
	$\begin{pmatrix} 6 & -1 & -4 \\ 15 & '-4' & -9 \\ -8 & '2' & 5 \end{pmatrix} \begin{pmatrix} 1+3\lambda \\ -4\lambda \\ -2+\lambda \end{pmatrix} = \begin{pmatrix} 6+18\lambda+4\lambda+8-4\lambda \\ 15+45\lambda+16\lambda+18-9\lambda \\ -8-24\lambda-8\lambda-10+5\lambda \end{pmatrix}$ or $their \mathbf{U} \times their \begin{pmatrix} 1 & 3 \\ 0 & -4 \\ -2 & 1 \end{pmatrix} \text{ or } \times their \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \text{ and } \times their \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$ or $their \mathbf{U} \times their \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \text{ and } \mathbf{U} \times e.g. \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} \text{ then } dir = \begin{pmatrix} 32 \\ 85 \\ -45 \end{pmatrix} \begin{pmatrix} 14 \\ 33 \\ -18 \end{pmatrix}$ Complete and correct method with their b and c for their $\mathbf{U} \times their$ parametric form of $\mathbf{U} \times t$ both vectors or $\mathbf{U} \times t$ points on the line and attempts direction. Must be an attempt to mutliply correctly i.e. clearly not row-row but allow attempts that use \mathbf{T}^{-1} for \mathbf{U} using their a and b provided all elements are constants and it is a "changed" \mathbf{T} OR $\begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ "2" & 4 & "9" \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1+3\lambda \\ -4\lambda \\ -2+\lambda \end{pmatrix} \Rightarrow \frac{2x+3y+7z=1+3\lambda}{3x+2y+6z=-4\lambda}$ $2x+4y+9z=-2+\lambda$ $x=18\lambda+14$ $\Rightarrow y=52\lambda+33$ $z=-18-27\lambda$ A complete method using their parametric form and their \mathbf{T} to produce and solve 3 simultaneous equations to find x , y and z in terms of λ Alternatively solves $\mathbf{T}x=\begin{pmatrix} \mathbf{"i}-2\mathbf{k} \end{pmatrix}$ and $\mathbf{T}x=\begin{pmatrix} \mathbf{"i}-3\mathbf{k}+\mathbf{k} \end{pmatrix}$ to find position and direction	M1
	$[l_1: \mathbf{r} =] \begin{pmatrix} 14+18\lambda \\ 33+52\lambda \\ -18-27\lambda \end{pmatrix}$ $\Rightarrow \frac{x-14}{18} = \frac{y-33}{52} = \frac{z+18}{-27}$ $dM1: Correctly converts their result into Cartesian equation.$ $\mathbf{Requires previous method mark}$ $A1: Correct Cartesian equation - allow equivalents e.g.,$ $\dots = \frac{z-(-18)}{-27}, \dots = \frac{-z-18}{27}$	d M1 A1
		(4)
		Total 8

2(b) Alternative

$$x = t \Rightarrow y = \frac{4}{3} - \frac{4}{3}t, \ z = \frac{1}{3}t - \frac{7}{3}$$

M1: Obtains parametric form (allow one slip only)

$$\begin{pmatrix} 6 & -1 & -4 \\ 15 & '-4' & -9 \\ -8 & '2' & 5 \end{pmatrix} \begin{pmatrix} t \\ \frac{4}{3} - \frac{4}{3}t \\ \frac{1}{3}t - \frac{7}{3} \end{pmatrix} = \begin{pmatrix} 6t - \frac{4}{3} + \frac{4}{3}t - \frac{4}{3}t + \frac{28}{3} \\ 15t - \frac{16}{3} + \frac{16}{3}t - 3t + 21 \\ -8t + \frac{8}{3} - \frac{8}{3}t + \frac{5}{3}t - \frac{35}{5} \end{pmatrix}$$

M1: As above

$$\begin{bmatrix} l_1 : \mathbf{r} = \end{bmatrix} \begin{pmatrix} 8+6t \\ \frac{47}{3} + \frac{52}{3}t \\ -9-9t \end{pmatrix}$$

$$\Rightarrow \frac{x-8}{6} = \frac{y - \frac{47}{3}}{\frac{52}{3}} = \frac{z+9}{-9}$$

dM1A1: As above

Question Number	Scheme	Notes	Mark	KS
3(a)(i)	$(\pm 7e, 0)$	Correct coordinates or $x = \pm 7e$, $y = 0$	B1	
(ii)	$x = \pm \frac{7}{e}$	Correct equations	B1	
	SC: If "49" used for "7" consist	tently in (i) and (ii) score B0 B1		,
				(2)
(b)(i)	$(PS^{2} =)(x - '7e')^{2} + y^{2}$ oe e.g. $(PS^{2} =)('7e' - x)^{2} + y^{2}$	Correct expression or equivalent with their 7 <i>e</i> . Must be in terms of <i>e</i> , <i>x</i> and <i>y</i> only. Apply isw once a correct expression is seen.	B1ft	
(ii)		Correct expression or equivalent with		
	$(PM^2 =) \left(\frac{7}{e} - x\right)^2$ oe e.g. $\left(x - \frac{7}{e}\right)^2$	their $\frac{7}{e}$. Must be in terms of e and x only. Apply isw once a correct expression is seen.	B1ft	
				(2)
(c)	$\left(\frac{PS}{PM} = e \Rightarrow\right) PS^2 = e^2 PM^2 =$ $\Rightarrow x^2 - 14ex + 49e^2 +$ Applies $PS^2 = e^2 PM^2$ with their PS and PS	✓	M1	
	$x^{2}(1-e^{2}) + y^{2} = 49(1-e^{2})$ $\Rightarrow \frac{x^{2}}{49} + \frac{y^{2}}{49(1-e^{2})} = 1 \Rightarrow b^{2} = 49(1-e^{2})^{*}$	Reaches given answer with fully correct proof. All shown steps required. Note that it is possible to obtain this result even if the B marks are not scored in (b) e.g. correct expressions but not in the forms required.	A1*	
(=)				(2)
(d)	$(4\sqrt{3})^2 = 49(1-e^2) \Rightarrow e^2 \dots \text{ or } e = \dots$	Replaces b^2 with $(4\sqrt{3})^2$ and solves for e^2 or e .	M1	
	$e = \frac{1}{7}$	Correct exact value for e (Not \pm)	A1	
				(2)

(e)	$x = \frac{7}{2} \Rightarrow \frac{\left(\frac{7}{2}\right)^2}{49} + \frac{y^2}{48} = 1 \Rightarrow y = \dots \left[(\pm)6 \right]$	Substitutes into their ellipse equation and obtains a value for <i>y</i>	M1
	Area $\triangle OPM = \left(\frac{1}{2}\right)$	$\left(\frac{7}{\left(\frac{1}{7}\right)'} - \frac{7}{2}\right)(6') = \dots$	
	Correct method for area of trians	gle OPM with their $\frac{7}{e}$ and their 6	d M1
	May see other approaches	s, e.g., "shoelace" method	
	e.g. $\frac{1}{2}\begin{vmatrix} 3.5 & 0 & 49 & 3.5 \\ 6 & 0 & 6 & 6 \end{vmatrix} = \frac{1}{2}(49 \times 6 - 6 \times 3.5) = \dots$		
	$\frac{273}{2}$ or $136\frac{1}{2}$ or 136.5	Any correct exact value	A1
	<u>Specia</u>	l Case:	
	$x = \frac{7}{2} \Rightarrow \frac{\left(\frac{7}{2}\right)^2}{49} + \frac{y^2}{48} = 1 \Rightarrow y = 36 \Rightarrow \text{Area}$	a $\triangle OPM = \left(\frac{1}{2}\right) \left(\frac{7}{\left(\frac{1}{7}\right)'} - \frac{7}{2}\right) (36) =(819)$	
	Scores N	/IOM1A0	
-		-	(3)
			Total 11

Question Number	Scheme	Notes	Marks
4(a)	$\mathbf{M}\mathbf{x} = \lambda \mathbf{x} \Rightarrow \begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	$= \begin{pmatrix} \lambda \\ -2\lambda \\ \lambda \end{pmatrix} \Rightarrow \text{e.g., } 2+3=\lambda \Rightarrow \lambda = 5$	
	$ (\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ -1 & 3 & -1 \end{pmatrix} $	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \text{e.g.}, -\lambda + 2 + 3 = 0 \Rightarrow \lambda = 5$	M1 A1
	A1: Corn Note that the working may be minimal	eading to a value for λ rect value so e.g. $2+3=\lambda \Rightarrow \lambda=5$ is sufficient. y scores both marks.	
(b)		2)() (0) () (2) (1)	(2)
(b)	$\begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{or} \begin{pmatrix} 3 & -1 \\ -1 & 7 \\ 3 & -1 \end{pmatrix}$ $\Rightarrow x =,$	$ \begin{vmatrix} 3 \\ -1 \\ 3 \end{vmatrix} \begin{pmatrix} x \\ y \\ z \end{vmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $ or e.g., $ \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{vmatrix} \times \begin{pmatrix} -1 \\ 7 \\ -1 \end{pmatrix} $ $ y =, z = $	M1
	values for x , y and z (not all 0) or uses a	oduce simultaneous equations and obtains suitable vector product (with two correct method unclear)	
	$k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	Any correct eigenvector (allow $x =, y$ =, $z =$ and apply isw if a vector is subsequently formed incorrectly)	A1
(1)	N. 1	32 22	(2)
(c)		0.14	B1
	$ (\mathbf{D} =) \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2' & 0 \\ 0 & 0 & 5' \end{pmatrix} $	Diagonal matrix with –3 and their eigenvalues anywhere on the leading diagonal and 0's elsewhere. Ignore labelling.	B1ft
	Correct method seen to normalise at	$ \begin{array}{c} $	M1
	$\mathbf{D} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} $ and	$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{pmatrix}$	A1
	· · · · · · · · · · · · · · · · · · ·	ed matrices. Elements may not have had ans of P could be in opposite direction)	
			(4) Total 8
			1 Otal O

Note that some candidates go straight into solving $|\mathbf{M} - \lambda \mathbf{I}| = 0$ e.g.

$$\begin{vmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{vmatrix} = 0 \Rightarrow -\lambda (\lambda(\lambda - 4) - 1) + 3 + \lambda + 3(1 - 3(4 - \lambda)) = 0$$
$$\Rightarrow \lambda^3 - 4\lambda^2 - 11\lambda + 30 = 0 \Rightarrow \lambda = -3, 5, 2$$

If this is all they do then the B mark in (c) can be awarded for $\lambda = 2$

The other marks in the question are available for the appropriate work.

Question Number	Scheme	Notes	Marks
5(a) Way 1	$(1-\operatorname{sech}^2 x =)1-(\frac{2}{e^x+e^{-x}})^2$	Replaces sech <i>x</i> with correct expression in terms of exponentials	B1
From LHS	$= \frac{\left(e^{x} + e^{-x}\right)^{2} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}}$	Expresses as a single fraction (or 2 fractions with the same denominator) and expands numerator	M1
	$= \frac{\left(e^{x} - e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} = \tanh^{2} x$	Fully correct proof	A1*
Way 2	$1 - \operatorname{sech}^2 x = (1 + \operatorname{sech} x)(1 - \operatorname{sech} x)$		B1
Diff. of 2	Uses difference of two squares and replaces expone	-	
squares	$= \left(\frac{e^{x} + e^{-x} + 2}{e^{x} + e^{-x}}\right) \left(\frac{e^{x} + e^{-x} - 2}{e^{x} + e^{-x}}\right) = \frac{e^{2x} + 1}{e^{x} + e^{-x}}$	$\frac{1 - 2e^{x} + 1 + e^{-2x} - 2e^{-x} + 2e^{x} + 2e^{-x} - 4}{\left(e^{x} + e^{-x}\right)^{2}}$	M1
	Expresses as a single fraction and expands numerator		
	$= \frac{e^{2x} - 2 + e^{-2x}}{\left(e^x + e^{-x}\right)^2} = \frac{\left(e^x - e^{-x}\right)^2}{\left(e^x + e^{-x}\right)^2} = \tanh^2 x$	Fully correct proof	A1*
Way 3	(6 16)	Replaces tanh x with correct expression in terms of exponentials	B1
From RHS	$= \frac{e^{2x} - 2 + e^{-2x}}{\left(e^x + e^{-x}\right)^2} = \frac{e^{2x} + 2 + e^{-2x}}{\left(e^x + e^{-x}\right)^2} - \frac{4}{\left(e^x + e^{-x}\right)^2}$		M1
	Expands numerator and $= \frac{\left(e^x + e^{-x}\right)^2}{\left(e^x + e^{-x}\right)^2} - \left(\frac{2}{e^x + e^{-x}}\right)^2 = 1 - \operatorname{sech}^2 x$	Fully correct proof	A1*
			(3)

Allow "meet in the middle" approaches as long as a conclusion is given e.g. lhs = rhs Example:

$$rhs = \tanh^2 x = \frac{\left(e^{2x} - 1\right)^2}{\left(e^{2x} + 1\right)^2}$$
 or $lhs = 1 - \operatorname{sech}^2 x = 1 - \left(\frac{2}{e^x + e^{-x}}\right)^2$

B1: Replaces $\tanh x$ or $\operatorname{sech} x$ with a correct expression in terms of exponentials

$$\frac{\left(e^{2x}-1\right)^2}{\left(e^{2x}+1\right)^2} = \frac{e^{4x}-2e^{2x}+1}{e^{4x}+2e^{2x}+1} \quad \text{and} \quad 1 - \left(\frac{2}{e^x+e^{-x}}\right)^2 = \frac{\left(e^x+e^{-x}\right)^2-4}{\left(e^x+e^{-x}\right)^2} = \frac{e^{2x}-2+e^{-2x}}{e^{2x}+2+e^{-2x}}$$

M1: Makes progress by e.g. removing brackets on *rhs* and expressing *lhs* as a single fraction and expands numerator

$$\frac{e^{2x} - 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}} = \frac{e^{4x} - 2e^{2x} + 1}{e^{4x} + 2e^{2x} + 1} \Rightarrow 1 - \operatorname{sech}^{2} x = \tanh^{2} x$$

A1: Correct proof and (minimal) conclusion e.g. "= rhs" etc.

$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \frac{\sinh^{2} x}{\cosh^{2} x} = \tanh^{2} x$$

$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \tanh^{2} x$$

Both score B1M1A0 as we would need to see numerators and denominators factorised.

Note that we will allow an equivalent identity to be proved by exponentials and the given identity deduced e.g.

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

B1: Correct exponential form seen for cosh or sinh used

$$=\frac{e^{2x}}{4} + \frac{1}{2} + \frac{e^{-2x}}{4} - \frac{e^{2x}}{4} + \frac{1}{2} - \frac{e^{-2x}}{4} = 1$$

M1: Expands and collects terms

$$\Rightarrow \cosh^2 x - \sinh^2 x = 1 \Rightarrow 1 - \operatorname{sech}^2 x = \tanh^2 x$$

A1*: Fully correct work leading to the correct identity

(b)	$\int \tanh^n 3x dx = \int \tanh^{n-2} 3x \tanh^2 3x dx$	Splits $\tanh^n 3x$ into $\tanh^{n-2} 3x \tanh^2 3x$	M1
	$= \int \tanh^{n-2} 3x \left(1 - \operatorname{sech}^2 3x\right) dx$	and applies $\tanh^2 3x = 1 - \operatorname{sech}^2 3x$	
	Do not condone $\int \tanh^n 3x dx = \int \tanh^{n-2} 3x \tanh^2 3x dx$ unless it is clear that 3x was		
	$= \int \tanh^{n-2} 3x (1 - \operatorname{sech})$	unless it is clear that $3x$ was $(x^2 x) dx$	
	intended and is therefore rec		
	$= \int \tanh^{n-2} 3x dx - \int t$	$ \operatorname{ranh}^{n-2} 3x \operatorname{sech}^2 3x \mathrm{d}x $	
	$\int \tanh^{n-2} 3x \operatorname{sech}^2 3x \mathrm{d}$	$4x = \frac{1}{3(n-1)} \tanh^{n-1} 3x$	
	Expands and integrates $\tanh^{n-2} 3$.		
	Or it is possible to use parts	s for $\int \tanh^{n-2} 3x \operatorname{sech}^2 3x dx$:	
	$\int \tanh^{n-2} 3x \operatorname{sech}^2 3x dx = \frac{1}{3} \tanh 3x \tanh^{n-2} 3x$	$x - \frac{1}{3} \int 3(n-2) \tanh 3x \tanh^{n-3} 3x \operatorname{sech}^2 3x dx$	d M1
	$= \frac{1}{3} \tanh^{n-1} 3x - (n-2)$	$\int \tanh^{n-2} 3x \operatorname{sech}^2 3x \mathrm{d}x$	
	$\Rightarrow \int \tanh^{n-2} 3x \operatorname{sech}^2 3x dx = \frac{1}{3(n-1)} \tanh^{n-1} 3x$		
	To score it must be a complete method leading to $\alpha \tanh^{n-1} 3x$ as above		
	$I_n = I_{n-2} - \frac{1}{3(n-1)} \left[\tanh^{n-1} 3x \right]_0^{\frac{1}{3}\ln 2} = I_{n-2} - \frac{1}{3(n-1)} \left(\frac{e^{2\ln 2} - 1}{e^{2\ln 2} + 1} \right)^{n-1}$		
	Introduces I_{n-2} and applies $x = \frac{1}{3} \ln 2$ using	a correct exponential definition of tanh or	ddM1
	accept use of a calculator if wor	3	
	$I_n = I_{n-2} - \frac{\left(\frac{3}{5}\right)^{n-1}}{3(n-1)}$ but co		
	Fully corr	rect proof.	A 1
	Allow recovery from slips e.g. tanh →ta reverting t		A1
	If there are clear errors that	are not recovered score A0.	
			(4)

(c)	$I_5 = I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = I_1 - \frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$ Uses their reduction formula to obtain I_5 in terms of I_1 Note that there may have already been an attempt at I_1 Condone the use of the letter p for the $\frac{3}{5}$ and allow a "made up" p for this mark.		M1
	This may be implied by e.g. I_5	$= I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}, I_3 = I_1 - \frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)}$	
	$\int \tanh 3x dx = \frac{1}{3} \ln(\cosh 3x)$	Integrates to obtain $q \ln(\cosh rx)$ oe e.g. $q \ln(\operatorname{sech} rx)$ Condone q and/or $r = 1$	M1
	$I_5 = \frac{1}{3} \ln \left(\frac{e^{\ln 2} + e^2}{2} \right)$	$-\frac{(9)}{6}$ $-\frac{(9)}{6}$ $-\frac{(81)}{625}$	
	Applies $x = \frac{1}{3} \ln 2$ using correct exponenti		dd M1
	work is correct e.g. $\cosh(\ln 2) = \frac{5}{4}$ to Must not be in terms of p now and must		
	$\frac{1}{3}\ln\frac{5}{4} - \frac{177}{2500}$	Correct answer in correct form (allow $a =, b =, c =$) Allow -0.0708 for c	A1
			(4)
			Total 11

Note that part (c) is "Hence" so they need to be using the given reduction formula, however, it is possible to find *I*₃ directly e.g.:

$$I_5 = I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$$

$$\int \tanh^3 3x \, dx = \int \left(\tanh 3x - \tanh 3x \operatorname{sech}^2 3x\right) dx = \left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^2 3x\right]$$

Score M1 for using the reduction formula to obtain I_5 in terms of I_3 (allow the letter p for the $\frac{3}{5}$ and allow a "made up" p for this mark) and then integrating $\tanh^3 3x$ to the correct form e.g. $\alpha \ln(\cosh 3x) + \beta \operatorname{sech}^2 3x(\operatorname{oe})$

The second **M** mark would also score at this point as in the main scheme for integrating $\tanh 3x$ to obtain $q\ln(\cosh rx)$ oe e.g. $q\ln(\operatorname{sech} rx)$

$$\left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^{2} 3x\right]_{0}^{\frac{1}{3}\ln 2} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = \frac{1}{3}\ln \frac{5}{4} + \frac{1}{6} \times \frac{16}{25} - \frac{1}{6} - \frac{27}{2500}$$

ddM1 for a complete method **using both limits** to obtain a numerical expression for I_5 using the correct exponential definitions or via a calculator.

A1:
$$\frac{1}{3} \ln \frac{5}{4} - \frac{177}{2500}$$

Correct answer in correct form (allow a = ..., b = ..., c = ...) Allow -0.0708 for c

Question Number	Scheme	Notes	Marks
6(a)	Correct method to obtain two rel	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \pm \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \pm \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = \pm \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$ Correct method to obtain two relevant vectors using subtraction . You can ignore labelling e.g. if they find \overrightarrow{BA} but call it \overrightarrow{AB}	
	e.g., $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} - \\ - \end{pmatrix}$ Correct method to find the vector product of	$\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ -13 \end{pmatrix}$ of two relevant vectors (if a correct method)	dM1
	is not shown, two correct components e.g., $\begin{pmatrix} 3 \\ 2 \\ 5 \\ 2 \end{pmatrix}$ Attempts the scalar product between the vectors of	6+10+26=42 oir normal vector and any of the position	dd M1
	2x + 5y + 13z = 42 oe e.g. $-2x - 5y - 13z + 42 = 0$	Any correct Cartesian equation.	A1 (4)
(a) alt 1	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \pm \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \pm \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = \pm \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$ Correct method to obtain two relevant vectors using subtraction.		M1
	e.g., $\mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix} \Rightarrow$	$x = 3 - 4\lambda - 5\mu$ $\Rightarrow y = 2 - \lambda + 2\mu \Rightarrow \text{e.g. } \lambda = z - 2$ $z = 2 + \lambda$ blane and uses components to eliminate at	d M1
	e.g., $y = 2 - \lambda + 2\mu \Rightarrow$ e.g. $\lambda = z - 2 \Rightarrow$ e.g. $\mu = \frac{1}{2}(y - 4 + z)$ Eliminates both of their parameters.		dd M1
	e.g. $x = 3 - 4(z - 2) - \frac{5}{2}(y - 4 + z)$	Any correct Cartesian equation.	A1
(a) alt 2	$3a+2b+2c=1$ $ax+by+cz=1 \rightarrow -a+b+3c=1 \Rightarrow a=\frac{1}{21}, b=\frac{5}{42}, c=\frac{13}{42}$ $-2a+4b+2c=1$ $\Rightarrow \frac{1}{21}x+\frac{5}{42}y+\frac{13}{42}z=1$ M1: Substitutes the given points to give 3 equations in 3 unknowns dM1: Solves simultaneously to find values for "a", "b" and "c" ddM1: Substitutes back in to obtain a Cartesian equation A1: Any correct equation		

(b)	Line $DE: (\mathbf{r} =) \begin{pmatrix} -1\\1\\-2 \end{pmatrix} \pm \lambda \begin{pmatrix} 2\\5\\13 \end{pmatrix}$	Obtains parametric form for line <i>DE</i> with their normal (or recalculated normal) seen or implied. Allow one slip only.	M1
	$14(2\lambda - 1) - (5\lambda + 1) - 17($	$(13\lambda - 2) = -66 \implies \lambda = \dots$	
	Substitutes their parametric form into the	ne equation of Π_2 and solves for λ – can	M1
	follow M0 provided their parametric fo	orm was an attempt at $\overrightarrow{OD} \pm \lambda$ (their n)	
	$\lambda = \frac{85}{198}$	A correct exact value for λ depending on their method e.g. use of	A1
	198	$\mathbf{n} = -2\mathbf{i} - 5\mathbf{j} - 13\mathbf{k} \text{ gives } \lambda = -\frac{85}{198}$	Al
	$DE = \sqrt{(2 \times \frac{85}{198})^2 + (5)^2}$	$5 \times \frac{85}{198})^2 + (13 \times \frac{85}{198})^2$	
	_	e.g.	
	$E = \left(-\frac{14}{99}, \frac{623}{198}, \frac{709}{198}\right) \Rightarrow DE = \sqrt{-\frac{14}{99}}$	$-1+\frac{14}{99}$ $^{2}+\left(1-\frac{623}{198}\right)^{2}+\left(-2-\frac{709}{198}\right)^{2}$	d M1
		rical expression for distance DE	
		us method mark	
	Note $DE = -\frac{85}{198}\sqrt{(2)^2 + (5)^2}$	$+(13)^2 = \dots$ is ok for this mark	
		Correct exact answer in the required form	
	85√22	or $p = \frac{85}{100}$ or $1\frac{19}{100}$	
	$DE = \frac{85\sqrt{22}}{66}$	66 66	A1
		or $p = \frac{85}{66}$ or $1\frac{19}{66}$ Not $DE = -\frac{85\sqrt{22}}{66}$	
			(5)

Beware - Special Case!

An incorrect sign of
$$\lambda$$
 may fortuitously give the correct length DE.
E.g. $\begin{pmatrix} -1\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\5\\13 \end{pmatrix}$ leading incorrectly to $\lambda = -\frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

E.g.
$$\begin{pmatrix} -1\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-5\\-13 \end{pmatrix}$$
 leading incorrectly to $\lambda = \frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

In such cases score as M1M1A0M1A1ft i.e. we will only penalise it once.

Way 2 Sim. eqns For first three marks	$(\pm) \left(\frac{x+1}{2} = \frac{y-1}{5} = \frac{z+2}{13} \right)$ $\Rightarrow y = \frac{5}{2}x + \frac{7}{2}, \ z = \frac{13}{2}x + \frac{9}{2}$ $14x - \left(\frac{5}{2}x + \frac{7}{2} \right) - 17\left(\frac{13}{2}x + \frac{9}{2} \right) = -66$ $\Rightarrow x = -\frac{14}{99}, \ y = \frac{623}{198}, \ z = \frac{709}{198}$	Obtains Cartesian form for line <i>DE</i> with their normal (or recalculated normal) allowing one slip only and attempts to find two variables in terms of the other variable M1: Substitutes into the plane equation and finds <i>x</i> =, <i>y</i> =, <i>z</i> = A1: Correct exact values ⇒ Way 1 for last two marks	M1 M1 A1
(c)	e.g. $\overrightarrow{AF}.\overrightarrow{AB}\times\overrightarrow{AC} = \begin{pmatrix} 1\\1\\q-2 \end{pmatrix} \begin{pmatrix} 2\\5\\13 \end{pmatrix} = 2+5+13q-26$ or $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M1
	For the scalar triple product look for at least 2 correct "elements". $\frac{1}{6}(13q-19) = \pm 12 \Rightarrow q = \dots$ Sets $\frac{1}{6}$ of their expression in q equal to one or both of ± 12 (or equivalent work e.g. their expression in q equal to one or both of ± 72) and proceeds to a value for q $q = 7, -\frac{53}{13}$ Correct values. Allow exact equivalents for $-\frac{53}{13}$ e.g. $-4\frac{1}{13}$		d M1
		10 10	(3) Total 12

Question Number	Scheme/Notes			Marks
7(a)	$y = \arccos(\operatorname{sech} x)$			
	e.g.:	$\cos y = \operatorname{sech} x \Longrightarrow$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(-\operatorname{sech} x \tanh x)}{\sqrt{1-\operatorname{sech}^2 x}}$	$-\sin y \frac{dy}{dx} = -\operatorname{sech} x \tanh x$ or, e.g., $-\sin y = -\operatorname{sech} x \tanh x \frac{dx}{dy}$	$\cos y = (\cosh x)^{-1} \Rightarrow$ $-\sin y \frac{dy}{dx} = -(\cosh x)^{-2} \sinh x$	M1
	Differentiates to obtain an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ of the correct form e.g. condone coefficient sign errors only.			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{sech}x\mathrm{tanh}x}{\mathrm{tanh}x}$	$\sqrt{1 - \operatorname{sech}^2 x} \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$	$\sqrt{1 - \operatorname{sech}^{2} x} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^{2} x}$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^{2} x}$	d M1
	Uses correct identities to obtain an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ in terms of x only with no roots but accept $\sqrt{\tanh^2 x}$ as "no roots"			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}x$	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}x$	$\frac{dy}{dx} = \frac{\cosh x}{\sinh x} \cdot \frac{\sinh x}{\cosh^2 x}$ $\Rightarrow \frac{dy}{dx} = \operatorname{sech} x$	
	Fully correct proof. An equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ and exactly two different hyperbolic			A1*
	functions with no roots must be seen before the given answer but accept $\sqrt{\tanh^2 x}$ as "no roots" Withhold this mark for any mathematical error e.g., clear use of			Air
	$\frac{d}{dx}(\arccos x) = +\frac{1}{\sqrt{1-x^2}} \text{ and } \frac{d}{dx}(\operatorname{sech} x) = +\operatorname{sech} x \tanh x$ or e.g. hyperbolic functions written as trig functions or vice versa.			
	Allow slips if they are recovered but clear and consistent errors score A0 Note: There may be other methods seen, e.g., using exponentials and "meeting in the			
	,	middle"		(2)
				(3)

(b)	$\frac{d}{dt} = \frac{\sinh^2 x \cosh^2 x}{\cosh^2 x}$	
(6)	e.g. $\frac{d}{dx}(\coth x) = -\operatorname{cosech}^2 x$ or $\frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$ or $\frac{-\operatorname{sech}^2 x}{\tanh^2 x}$ or $1 - \coth^2 x$ etc.	
	2	
	or e.g. $\frac{\left(e^{x}-e^{-x}\right)^{2}-\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}-e^{-x}\right)^{2}} \text{ or } \frac{2e^{2x}\left(e^{2x}-1\right)-2e^{2x}\left(e^{2x}+1\right)}{\left(e^{2x}-1\right)^{2}} \text{ or } \frac{-4}{\left(e^{x}-e^{-x}\right)^{2}} \text{ etc.}$	B1
	Correct derivative of $\coth x$ in any form. Allow recovery if they write e.g. $-\csc^2 x$	
	when $-\operatorname{cosech}^2 x$ is clearly implied by subsequent work.	
	e.g., $\operatorname{sech} x - \operatorname{cosech}^2 x = 0 \Longrightarrow \operatorname{sech} x = \operatorname{cosech}^2 x \Longrightarrow \frac{1}{\cosh x} = \frac{1}{\sinh^2 x} \Longrightarrow$	
	$a \cosh^2 x + b \cosh x + c = 0$ or $a \operatorname{sech}^2 x + b \operatorname{sech} x + c = 0$	
	or x2	
	$\operatorname{sech} x - \operatorname{cosech}^{2} x = 0 \Longrightarrow \frac{2}{e^{x} + e^{-x}} - \left(\frac{2}{e^{x} - e^{-x}}\right)^{2} = 0 \Longrightarrow$	M1
	$\Rightarrow Ae^{4x} + Be^{3x} + Ce^{2x} + De^{x} + E = 0$	
	Sets $f'(x) = 0$ and uses correct identities to obtain a 3TQ in $\cosh x$ or $\operatorname{sech} x$	
	or substitutes the correct exponential forms and obtains a 5 term quartic in e^x	
	$\cosh^2 x - \cosh x - 1 = 0 \text{or} \operatorname{sech}^2 x + \operatorname{sech} x - 1 = 0 \text{ oe}$	
	$\Rightarrow e^{4x} - 2e^{3x} - 2e^{2x} - 2e^{x} + 1 = 0 \text{oe}$	A1
	\Rightarrow e -2 e -2 e -2 e $+1$ = 0 oe Correct quadratic equation or correct quartic equation.	
	$\cosh x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} \left(= \frac{1 + \sqrt{5}}{2} \right)$	
	or e.g., $\left(\operatorname{sech} x + \frac{1}{2}\right)^2 - \frac{1}{4} - 1 = 0 \Rightarrow \operatorname{sech} x = \left(\frac{-1 + \sqrt{5}}{2}\right)$	
	Solves quadratic resulting from sech x + their derivative of coth x = 0 Must obtain a real and exact value > 1 (or between 0 and 1 if sech used).	dM1
	Apply usual rules. (No need to reject invalid values)	
	If no solving method seen one solution must be consistent with their equation.	
	For the 5 term quartic in e^x progress is unlikely unless they proceed via e.g.	
	$\left(e^{2x} - \left(1 + \sqrt{5}\right)e^x + 1\right)^2 = 0$	
	$x = \operatorname{arcosh}\left(\frac{1+\sqrt{5}}{2}\right) = \ln\left(\frac{1+\sqrt{5}}{2} + \sqrt{\left(\frac{1+\sqrt{5}}{2}\right)^2 - 1}\right)$	
	or $\frac{e^x + e^{-x}}{2} = \frac{1 + \sqrt{5}}{2} \Rightarrow e^{2x} - (1 + \sqrt{5})e^x + 1 = 0 \Rightarrow e^x = \frac{1 + \sqrt{5} + \sqrt{(1 + \sqrt{5})^2 - 4}}{2} \Rightarrow x = \dots$	dd M1
	Uses correct logarithmic form or exponentials to find x as a ln of an exact value. Exponential definition must be correct and quadratic solving subject to usual rules or	
	consistent with their equation leading to a value of $e^x > 0$	
	$\Rightarrow x = \ln\left(\frac{1}{2}\left(1 + \sqrt{5}\right) + \sqrt{\frac{1}{2}\left(1 + \sqrt{5}\right)}\right) \text{ or accept } x = \ln\left(\frac{1 + \sqrt{5}}{2} + \sqrt{\frac{1 + \sqrt{5}}{2}}\right)$	A1
	Note that $x = \ln \frac{1}{2} \left(1 + \sqrt{5} \right) + \sqrt{\frac{1}{2} \left(1 + \sqrt{5} \right)}$ scores A0	
		(6)
		Total 9

Correct work in (b) leading to:

$$\cosh^2 x - \cosh x - 1 = 0 \Rightarrow \cosh x = \frac{1 + \sqrt{5}}{2}$$

$$x = \operatorname{arcosh}\left(\frac{1+\sqrt{5}}{2}\right) = \ln\left(\frac{1+\sqrt{5}}{2} + \sqrt{\frac{1+\sqrt{5}}{2}}\right)$$

With no evidence where the $\sqrt{\frac{1+\sqrt{5}}{2}}$ comes from, scores: B1M1A1dM1ddM0A0

Question Number	Scheme	Notes	Marks
8(a)	$\frac{dx}{dy} = \frac{y}{4} \text{or} 2y \frac{dy}{dx} = 8 \text{or} \frac{dy}{dx} = \left(\frac{1}{2}\right) \left(2\sqrt{2}\right) x^{-\frac{1}{2}} \text{ or } \left(\frac{1}{2}\right) \left(2\sqrt{2}\right) \left(\frac{2\sqrt{2}}{y}\right) \mathbf{oe}$ Any correct equation in $\frac{dx}{dy}$ or $\frac{dy}{dx}$ in terms of y or x		B1
	$\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \int \sqrt{1 + \left(\frac{y}{4}\right)^2} (dy) \text{ or } \left(\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} dy = \int \int \sqrt{1 + \left(\frac{4}{y}\right)^2} \cdot \frac{y}{4} (dy)\right)$		M1
	Forms $\int \sqrt{1+\left(\frac{dx}{dy}\right)^2} (dy)$ or $\int \sqrt{1+\left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} (dy)$ correctly with their derivative	2.22	
	$x = 18 \implies y^2 = 144 \implies \beta = 12, \ \alpha = 24$ $\Rightarrow (\text{perimeter of } R =) 24 + 2 \int_0^{12} \sqrt{1 + \frac{y^2}{16}} dy$	Correct expression	A1
			(3)

(b)	$y = 4 \sinh u \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = 4 \cosh u$	Correct derivative. $ \frac{dy}{dx} = 4\cosh u $	B1
	$\int \sqrt{1 + \frac{y^2}{16}} dy = \int \sqrt{1 + \frac{\left(4\sinh u\right)^2}{16}} \left(4\cosh u\right) \left(du\right)$ $\left(= 4\int \cosh^2 u du\right)$	Full substitution, correct for their $\frac{dy}{du}$	M1
	$\int \cosh^2 u du = \int \left(\frac{1}{2}\cosh 2u + \frac{1}{2}\right) du = \frac{1}{4}\sinh 2u + \frac{1}{2}u$		
	or $\int \left(\frac{e^{u} + e^{-u}}{2}\right)^{2} du = \int \left(\frac{e^{2u}}{4} + \frac{1}{2} + \frac{e^{-2u}}{4}\right) du = \frac{e^{2u}}{8} + \frac{1}{2}u - \frac{e^{-2u}}{8}$		d M1 A1
	d M1: Uses $\cosh^2 u = \pm \frac{1}{2} \cosh 2u \pm \frac{1}{2}$ and integrates to obtain $a \sinh 2u + bu$ or uses		
	$k(e^{u} + e^{-u})$ for cosh u, expands and integrates to obtain $ae^{2u} + bu + ce^{-2u}$		
	A1: Correct integration Perimeter of <i>R</i> :		
	$= 24 + (2)(4) \left[\frac{1}{4} \sinh 2u + \frac{1}{2} u \right]_0^{\operatorname{arsinh} 3 = \ln(3 + \sqrt{10})}$	$= 24 + (2)(4) \left[\frac{e^{2u}}{8} + \frac{1}{2}u - \frac{e^{-2u}}{8} \right]_0^{\ln(3+\sqrt{10})}$	
	$= 24 + 2 \left[2\sinh u \sqrt{1 + \sinh^2 u} + 2u \right]_0^{\operatorname{arsinh3} = \ln(3 + \sqrt{10})}$	$= 24 + e^{2\ln(3+\sqrt{10})} - e^{-2\ln(3+\sqrt{10})} + 4\ln(3+\sqrt{10})$	
	$= 24 + 2\left[(2)(3)\sqrt{1+3^2} + 2\ln\left(3+\sqrt{10}\right)\right]$	$24 + \left(3 + \sqrt{10}\right)^2 - \frac{1}{\left(3 + \sqrt{10}\right)^2} + 4\ln\left(3 + \sqrt{10}\right)$	ddM1
	Substitutes arsinh3 and/or $\ln \left(3 + \sqrt{3^2 + 1}\right)$ into their expression using correct identities or		
	correctly removes exponentials to obtain a numerical expression in constants and lns only Accept use of calculator here e.g. $\sinh(2 \arcsin h3) = 6\sqrt{10}$		
	$24 + 12\sqrt{10} + 4\ln(3 + \sqrt{10})$ or, e.g., $4(6 + 3\sqrt{10} + \ln(3 + \sqrt{10}))$	Correct answer – any exact simplified equivalent	A1
	Note: Integration by calculator is likely to access the first two marks only		(6)
	MOMAL ROD DAND 5		
	TOTAL FOR PAPER: 75 MARKS		